Showing posts with label upcycled. Show all posts
Showing posts with label upcycled. Show all posts

Tuesday, 30 May 2023

Wheeled flower pot stand

When I started woodworking, a key motivator was simply financial - make stuff myself and save cash.

A recent trip to the garden centre, where they were selling these wheeled flower pot stands at absurd prices, convinced me to get back to basics and make my own.

There's nothing complex about this build. Simple pallet wood - all from the same pallet to keep consistent appearance, and avoid the need to process the wood too much (planing, thicknessing etc)

A simple grid of five slats with gaps in between and two perpendicular underneath, all 40cm in length. Each overlap with two screws - the only 'gotcha' being to be mindful of the screw placement on the end ones, given that it'll be cut into a circle.



Then simply cut into a circle with a jigsaw, and a quick sand to remove sharp edges.

Four wheels from an old office chair were attached - these are simply push-fit into a drilled hole.

That's all it took - literal junk (pallet wood, wheels scavenged from a binned chair, and even the screws were from the 'miscellaneous' jar). Whole thing took less than a couple hours and saved about thirty quid.


Thursday, 26 August 2021

Woodstore / Planter from reclaimed wood (old shed)

After finishing the upcycled planter by the firepit, I realised that something similar would be useful as a wood store for the firepit, and would also help define a boundary to the patio and fire pit area.

Looking through the remaining timber from the shed, there was still the shed floor, and the second long wall to use, and the short (back) wall

These formed the back and front of the second planter, with the back wall being split into 2 lengths to provide the sides, in mostly matching dimensions to the first planter.

To help keep the wood dry, the shed door and it's hinges were repurposed. The thing is, the planter is around 8 foot long, and the door only 6.

To overcome this, it's split into 2 sections, with a divider made from part of the shed front. The 6 foot section with the lid is the woodstore, and the remaining 2 foot section was lined out with plastic to create another planter, in the same manner as the first planter.

The idea is that this will house climbing plants to grow along the trellis that has been installed on the fence at the back of the patio.

The door had to be trimmed down as the planter was narrower, and the hinges had to be switched to the opposite side. A bit of scrap chain (left over from the light fitting project), and an odd carabiner clip I had lying around, were looped around the tree to provide a latch to hold the lid open when needed.





Bonus Planter

That was meant for making planters. But, when I set out with all these garden builds, I did set a 'zero-ish' waste rule. And when the bricks were delivered, they came in a wooden crate, which would then need disposing of.

Plus there were a few miscellaneous bits of shed panel left, which were otherwise just going to be firewood.

So I quickly whipped up a third mini-planter to go out on the front lawn. It's pretty rough and ready, but will serve it's purpose, at least for now and until I have more definite plans of the work I want to do out front.

 

 

The bonus planter, just needs top soil and plants

Sunday, 15 August 2021

Planter from old shed

When working on the patio and fire pit, I took on the challenge of 'zero-ish' waste - not having any more waste than could fit in the regular household bins. No skips, special collections etc.

On the opposite side to where the fire pit was built, there was an old shed, which wasn't in bad condition, but was unwanted.

It was taken down so that we could make use of the paving slabs which were being used as it's base.


Along the side of where the raised patio was being built, there was a gap which used to have long-dead roses in - the area marked in brown in the patio-plan model below


Just eye-balling it, I could see that the length of the shed (approx 8 feet), was about the same, and came up with the idea of using the sides to create a raised planter there. 

It also helped the zero-ish waste plan, as the planter would provide space for re-homing soil removed during the fire pit and patio builds, as it could be filled up from ground-level

The frame was simple, just the four sides simply screwed together - leaving the bottom open for drainage.

The front panel was cut down from the front of the shed (below the windows), and the back of the planter was one of the roof panels of the shed. The sides were the other roof panel, cut lengthways.



The back of the planter is higher than the front - I considered cutting it down, but it does provide some utility in that it gives a place to mount things like chicken wire/frost protection/cold frames over the top of the plants if need be, and as it is still lower than the fence itself, I decided to leave it alone.

And finally some miscellaneous bits of shed timber was used to add trim to the top of the panels, which also served to pin the plastic liner in place.

The wood was treated with normal fence stain/wood preservative.

The insides of the frame are lined with plastic sheet (which as it happens, is also up-cycled from some packaging.) and stood on some slab offcuts to protect the wood from moisture caused by contact with the wet soil.



 



 

Friday, 23 October 2020

Combination pinboard and cinema poster frame

Even before Covid-19, people were already starting to talk about "work-life balance", and it's effect on health.

When Covid made working from home the norm, maintaining that balance became even harder, especially for those whose homes are more open-plan, meaning the same rooms they go to relax could end up also being where they go to work.

This project is aimed at exactly this problem.

During the day, the frame can be opened up, to reveal a pin-board where all the usual work notes and paperwork can be pinned, but once the working day is done, the frame can slide closed, shutting the metaphorical door on office life, leaving just the poster visible, more in fitting with a relaxed home lounge look.

The 'front' (poster) frame

This frame is more akin to a traditional frame, but as it will be the sliding component, and so not directly mounted to the wall, keeping the weight low is important.

As with the back frame, the joints are mitred half-lap. The same oak is used, but much thinner (roughly half inch). A rebate is cut in to seat the glass, poster and backing board.

With weight limitation in mind, thin perspex was used in place of glass. The rest of the frame is pretty standard - a sandwich of the perspex, the poster, backing card, and then hardboard (in this case, up-cycled panels from a hollow core door) all held in place with some pins.

The 'back' (pinboard) frame

To start with, this is a standard mitred half-lap jointed frame, albeit deeper than a normal frame - about an inch. It also does not have any rebate or groove, as it's not needed.

The pin board that I'm re-purposing is another of the same style I used for the desk organiser. It's smaller than the poster frame, but this is by design to allow room for the sliding mechanism.

The two long sides are removed.

These are replaced with longer oak sides that attach it to the frame. On one side this is simply screwed into the larger frame, and on the other, small grooves are cut into the frame for it to fit into, similar to a tenon.

 

This second side leaves approximately 4 inches between the edge of that inner frame, and the edge of the main frame.

 

The rail mechanism

2 4x2" pieces of oak are drilled with a 20mm hole lengthways, and then glued in place at the top and bottom of the frame, filling this gap.

Then, the entire frame is cut lengthways, halfway through these pieces of oak, leaving 2" of it on either side. These will form the rails.

The 20mm hole is extended through the 'long side' part of the inner frame, at both ends.

The 'thin' part of the frame - the one without the pin board attached, is the part of the back frame that the front frame will mount to, and be the part that slides out.

16mm aluminium tubing was inserted through each of the channels. On the thin side of the frame, a screw was driven perpendicular to the 20mm hole, fixing the tube in place and adding some support to the glued in block.

These two tubes are then threaded through the 'fat' part of the frame.


Joining the two frames

Screws from the back frame are driven through into the front frame on the left hand side (the 'thin' side).

To prevent sagging when the frame is opened, leather loops are attached around the other end of the tubing and screwed into the back of the front frame.

This makes the sliding part of the frame counterbalance it's own weight.

The whole thing was finished with a coat of danish oil, 4 angle brackets were added and it was mounted to the wall.

 

 

Friday, 21 August 2020

Straight razor from table saw blade

So a while back I replaced the table saw blade in the workshop and got the idea in my head to try and make a straight razor out of it.

I sketched out a quick design and then cut it from some scraps of redwood (the same stuff I used in the ring box project - not sure if that's the correct species, but it's wood, and it's a red-ish colour, so close enough.) on the bandsaw. Fortunately I had two scraps the same thickness, so I needn't worry about the thickness of each of the scales (sides) being identical.

The blade itself was sketched out in marker on the old table saw blade and cut out with an angle grinder. Once the rough shape was done, a mix of bench grinder and rotary grinding tools were used to refine the shape.

The gap between the 2 scales of the handle was padded out using some brass sheet, cut to match the shape of the scales, whilst including cut out space both for the blade to fold in to, and to allow the tang to rotate into when the blade is opened.

This, and the scales were both epoxied together, and then two holes were drilled and brass pins added, for additional strength and their own aesthetic quality.

The third brass pin provides the hinge that the blade will pivot from to make the opening and closing mechanism.

Before the blade and handle were put together, it was easier to finish each part separately.

In the case of the handle, this meant sanding to round off the edges and make it more comfortable to hold, and a wipe out with danish oil.

In the case of the blade this meant a lot of grinding, sharpening and honing to get it to a sharp enough edge to cut hairs. With hindsight although it probably isn't the best steel to use for a blade, it is sharp enough to shave with - it just requires frequent honing.

But, at the end of the day it works, I'm pleased with how it's turned out, and I learnt a bit more about blade making and the dark arts of sharpening and honing along the way. I also now totally get why some people fall into this particular niche rather than just more general metalworking... I'm actually quite tempted to go find some better steel and make another already.

Tuesday, 26 May 2020

Tray Stand / Foldable Table

While lockdown has prevented me from being able to get back to many woodworking projects this year, I did manage to cut a few offcuts to size and sand them in order to fashion a stand for a bamboo tray. The idea being for it to be a temporary table or drinks stand in our small patch of outside space.

The construction is a simple X-frame, with horizontal bars at each of the four points - 2 to support the tray, 2 to act as feet. These are joined to the X-frame using a 3D-printed bracket - the SCAD file for this is up on GitHub.

In order to stop the frame from spreading out and collapsing under the weight of the tray and it's contents, the feet were joined with some denim fabric, courtesy of an old pair of jeans. This allows the stand to be folded up, but providing plenty of rigidity during use.

Sewing things other than leather is a pretty new thing to me, my only prior sewing-related project being the lanyard I made a while back. So I'm the first to admit it's not the neatest work, but it does the job, so can't complain.

With the benefit of hindsight, the hinges allowed a bit too much flexibility, allowing the cross-bars to roll. The fabric on the feet alleviates this at the bottom. On the top, the base of the tray has a small lip which helps latch onto the cross-bars - whilst they still roll, it's impact is minimised and the tray/table works fine.

Thursday, 30 April 2020

Yarn slack winder

This is another of the lockdown projects where I'm trying to keep myself occupied during the Covid-19 lockdown by challenging myself to a project per week, using only materials from my workshop junk bin.


Background
I don't crochet or knit, but my partner does, and I often end up watching TV whilst having been delegated to idly unwinding a ball of wool.

So, apparently, when crocheting or knitting, it's important to make sure that there's some slack between the workpiece and the ball of yarn. This usually means stopping every so often to pull more yarn from the ball. It can lead to inconsistent tension in the workpiece, making the work uneven.

This gave me an idea to create a yarn dispenser that could be hands-free, and unwind small amounts at a time, to maintain slack.

The OpenSCAD model
The design

The basic principle is to repurpose two rubber rollers (grey) from a printer. The bottom one is attached to a motor, which is housed in the case (red), and supported at the other wide by a support (yellow).
The top roller is attached to two mounts (blue) and is free-rolling.

The two mounts will be attached to their respective parts of the case by screws, where the tightness can be adjusted to allow more or less gap between the rollers, to vary the grip depending on the thickness/density of the yarn.
 
The yarn will be sandwiched between the two rollers, so that when the motor is activated by a foot pedal, it is pulled between the rollers.

To keep the two sides of the frame separate, they were mounted to a small piece of scrap acrylic I found. It's not a perfect size, but it's functional enough for this prototype.

The 3D printed models are pretty basic, but should anyone want to use them, they're up on GitHub.



The electronics

The motor is some generic DC motor that, like most things in the junk bin, was probably pulled from an old printer.

Most of the circuit for this was was salvaged from the old Smoke Machine project.

The SN754410 was de-soldered so that it would function in a more conventional way, powered from a 9v wall wart, and a TS7805 regular to provide 5v.


The circuit. The SW1 switch allows the direction of the motor to be easily switched. SW2 is the foot pedal that will be pressed to feed the yarn.

The electronics were built into an old business card box, similar to the USB KVM Switch.

With the circuit hot glued in place, a piece of a disposable pen was glued to the button to extend it's reach, so that it would sit slightly higher than the top of the box lid. This means the the circuit enclosure also doubles up as the foot pedal - pushing down on the lid pushes on the pen, and in turn presses the switch.

Finished product
In initial testing, it was discovered that the yarn would veer off to the side of the rollers and become tangled. As a quick-fix solution, I used a scrap of leather, punched a guide hole in the middle and tacked it to the input side of the rollers.






Friday, 10 May 2019

Pen Plotter Part 2 - Electronics and Software


This is the second part of my pen plotter build - part 1, covering the physical structure of the build, is here.

Printing Hello World!


Electronics and Software 

The stepper motors are driven by EasyDriver controllers which were recycled from an old, abandoned project.

Everything else is pulled together and controlled using an Arduino Duemilamove which provide the G-Code interpretation using the GRBL library.

Because GRBL is designed with 3-axis CNC machines in mind, it requires some alterations to work with the servo pen-plotter mechanism.

Thankfully I'm not the first person in the world to have attempted this, and this instructable provided a good head start on how to do this.

The main takeaways are to download the regular GRBL library, but swap out the spindle_control.c file with the one from the instructable. In that file there are two lines:

#define PEN_SERVO_DOWN 
#define PEN_SERVO_UP

Change the servo values if necessary - after experimenting with changing them, I found that I got the best results setting the down value to 255 and the up value to zero.

Inkscape GCode Conversion
The GCode plugins for Inkscape seem to be included with a standard installation - I didn't have to do anything special for them to appear.

Whatever your source image is (in the video below it was a text object), it needs to be converted to paths.

If you're using objects within Inkscape, such as text, use Path, Object to Path.


If you're starting with a bitmap image then use Path, Trace Bitmap, and use the Edge Detection method.


Post-processing
 
The next step is to run the generated GCode through a post-processor to add the instructions to raise/lower the servo. The post-processor linked in the Instructable didn't work for me, so I ended up making my own - the code is on GitHub.



To run the machine, I use the Universal G-Code Sender.

Troubleshooting

There were a few issues homing the plotter as near the extremities of the carriages travel it would struggle to move smoothly, and would not reach close enough for the limit switches to be triggered, resulting in it stalling. To overcome this I added screws to the structure in such a way that the limit switches would be triggered when stalling began to occur.


The pen holder that I designed in the previous post did work, but there were a few issues with the overly simplistic design:
  • The fact it rotated the marker off the page created 'flick' marks where the pen was raised/lowered.
  • As it was secured entirely on the servo, it had too much flexibility which resulted in it being dragged incorrectly on the page.


To fix this I redesigned the pen mount, factoring in what had already been created so as to make use of what was already created as much as possible.


The new design relies on supporting rails mounted to the existing carriage, which would allow the servo to push the pen mount directly down onto the paper. When lifting the servo returns to its initial position, letting springs added to the rails lift the pen back up.

This new nozzle is on github here.












Wednesday, 3 April 2019

Pen Plotter Part 1 - The Structure

I had two new years resolutions this year - start posting here on a more regular schedule, and to start whittling down the pile of electronic junk that I'd accumulated over the years.

I've obviously failed the first one already, but to aid the second one I've set myself the challenge of using as much of the junk pile into projects as possible.

A pen plotter works kind of like a printer, but allows for any flat material to be printed on, and uses vectors to draw images - like a person drawing by hand, instead of rasters like a traditional printer.

The principle is simple, a basic 2-axis structure with a tool-end that allows for a marker/pen/pencil to be simply placed on or lifted off the paper.

The stepper motors, gears and drive belts, along with the steel structural rods and bushing were taken from a variety of old ink-jet printers and scanners. The limit switches and servo were either just in my components library or salvaged from old projects.

The supporting structure was 3D printed, having been designed in OpenSCAD - the SCAD source code can be found on GitHub. I'm not putting the files on Thingiverse as they're created to fit the random motors that I scavenged, so anyone else using the design would most likely need to alter the dimensions for their own motors.

The chipboard base has been up-cycled from an old flat-pack desk.


The structure
The 4 main components of the first axis
(Rods not 3D printed)


The first axis consists of two end mounts - one being a simple shape to support the ends of the steel bars (a wheel for the pulley was added manually after printing.)
The other end is a larger mount which contains a mounting point to secure the first stepper motor - obviously this was created bespoke to the stepper that I salvaged, but could easily be adapted in the SCAD file.

In the middle are two pieces which will form the carriage for the second axis. - they're similar to the first end piece, but also contain mounting points to secure the pulley.

The second axis builds off of the first, fitting between the two runners created as part of the first axis:

The second axis
and how it fits with the first axis carriage.
The two holes are the front are for the steel guide rods. The gap in the middle is a space for the limit switches to be attached to the carriage and the cutaway at the top is for the second axis' motor.
The two runners and this carriage are fixed together by plastic friction welding.


The motor/gear assembly that I'll be using for the second axis lifts the belt over the top of the first axis' rods, so the height of the end piece is made to match. The notch at the top accommodates the spring-loaded tensioner for the belt.

The carriage for the second axis is a simple block which contains the two limit switches for the axis, a servo and a bracket to mount the pulley to.

The carriage on the second axis

The pen holder

The final structural piece is a simple pen holder which connects to the arm of the servo.

A post shared by Anthony (@darkmidnight_diy) on

The next part will cover the electronics and software.

Wednesday, 12 September 2018

3 Panel Oak Picture/Poster Frame


A few years ago I bought a set of three Hotline Miami posters from the Eurogamer Expo. As much as I liked them I never round to hanging them - I kept telling myself I'd get a good frame, but never did.


This frame was made from a single piece of oak, and consists of dovetail-like joints in for the middle of the structure with half-lap miters for the corners.

The glass was upcycled from 3 individual picture frames from the local scrapyard - The existing frames were completely mismatched and in a bad state, but they all happened to have the same size glass, which cleaned up easily for this new frame.

Pic of the finished frame below, with sketch/build video below.
A post shared by Anthony (@darkmidnight_diy) on

Saturday, 19 May 2018

Wooden Pallet Mallet

I typically don't do much woodwork over the winter as the weather has a tendency to suck the enjoyment out of things.

When I set-up to start again in the spring, I usually find that I need a simple project to warm up and refresh my techniques before I get involved with something more complex.

Normally it's a bit of a throwaway project that I wouldn't put online, but this one was very simple to create and has been very useful, so I thought that it might be of use to others.

This year I made a wooden mallet as I needed one for leatherwork.

The handle was two strips of pallet wood glued up and shaped around a hammer handle.





The head of the mallet is one of the end blocks, also from a pallet.

The finished mallet. Simple, but effective


The technique is simple - drill through the centre of the block to create an opening that the top of the handle can fit through, but is narrow enough to make a tight fit.

Then drill through the part of the handle that protrudes from the top of the block and wedge a dowel in place to prevent the block from slipping. (The block is actually a tight enough fit that this is a little bit unnecessary, but it adds an extra layer of safety, and a bit more of an aesthetic quality to things).

Everything after that is just a matter of sanding and shaping.


Monday, 12 March 2018

Wedding Sign



I was asked to create a sign for a wedding. They're planning on having Karaoke and wanted a sign pointing to the bar for "Dutch courage".

Design


After exchanging a few ideas and a couple of preliminary sketches, we arrived at this design. Most of the graphics came from clipart, and the typeface is "URW Chancery L" in 132pt.


The overall size is  approximately a the size of an A3 piece of paper. As I don't have an A3 printer, I split the design across a few A4 sheets for printing.

Then came several hours of carving out the letters and patterns with a scalpel to create the stencil for later spray painting.









Building the sign
The sign is created from joining 3 lengths of up-cycled pallet wood. As with the Treasure Chest, the jointing was done manually with a combination of hand planing and simply finding lengths of wood that lined up well together.

The supports at the back of the sign for the stand
The wood is glued together, and also there are cross beams on the back - one at the top and one at the bottom.

These also form the mount for the stand.








The wood for the stand same from an old garden parasol that I upcycled. As it's previous life was as an object that hinged at various points and was designed to be folded, it was ideally sized - all I needed was to cut down the lengths. The pivot is nothing fancy, just a single screw.



The entire sign was sanded, and stained with a teak wood stain. An early attempt at stencilling the sign didn't go well, so the front ended up being sanded and stained a second time.
This turned out to be a blessing in disguise as after the second coat the woodgrain was much more pronounced and looked much better for it.

The arrow
Maybe I'm just a cynic, but it crossed my mind that although the venue and location has already been set for the wedding, Murphy's Law suggests that when the wedding rolls round, things will have changed and the arrow will end up pointing the wrong way, so I came up with the idea of making it a magnetic stick-on arrow so it could be swapped around.

The rear of the arrow with metal strip
Magnets embedded into the surface of the sign for mounting the arrow

I cut the arrow on the bandsaw, and painted it white, then a cut a section of flat steel and epoxyed it to the back of the arrow.
Then in the place on the sign where the arrow was to be mounted, I used a forstner drill to drill 3 inlays. In each of these holes I epoxyed a circular magnet so that it sat flush with the face of the sign.


Painting
I taped the stencil to the face of the sign, and applied two coats of enamel white spray paint. Unfortunately the delicate patterns on the edge of the stencil didn't work too well with the spray, so once a couple of sprays were down to mark out the position of the design, I removed the stencil and started painting by hand. To do this I sprayed some of the paint into the cap, and used a thin brush.

The end result

A post shared by Anthony (@darkmidnight_diy) on